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LETTER TO THE EDITOR 

Superconductivity-induced conductance suppression in 
mesoscopic solids 

V CHui t and C JLambert 
School of Physics and Materials, Lancaster University, Lanmter LA1 4YB. UK 

Received 21 September 1993, in final form 2 November 1993 

Abstract. We examine the change 6G in the two-pmbe electrical conductance G of a mesoscopic 
sample due to the switching on of supermnductivity and prove that when conductance of the 
n o d  mesoscopic host is sufficiently high. the onset of supermnductivity always produces a 
decrease in G. If the superconducting order parameter is of magnitude A. we focus a n t i o n  on 
the susceptibility XI  = limA+oaG(A)/a(A'). For weakly disordered. (i.e. ballistic) normal 
hosts, the average value of this quantity is negative. For diffusive hosts, the mean of xA 
increases linearly with [N - G(0)I. where N is the number of open channels in the external. 
current carrying probes, while Lhe fluctuations abont the mean found to be independent 
of G(0).  With increasing normal disorder, undergoes a m i t i o n  to a region of large 

When a superconducting island is added to a normal host, one nakely expects that the 
electrical conductance of the composite material will increase. While this expectation is 
borne out by measurements on macroscopic solids, there is no reason to believe that such 
behaviour can be extrapolated to mesoscopic samples. In this limit, quasi-particles can 
pass through the system without scattering inelastically and transport properties depend in 
detail on the quantum interference of propagating waves within a device [1,2]. Recently 
[3,4,51 it has been demonstrated that mesoscopic samples with superconducting inclusions 
are attainable experimentally and therefore questions conceming changes in transport 
coefficients due to the onset of superconductivity, are of immediate interest. The aim of this 
letter is to demonstrate that, for a sample with sufficiently high conductance, the change 6G 
in the two-probe conductance of a mesoscopic sample, due to the onset of superconductivity 
can have arbitrary sign and for a sample with a high enough conductance is gwrunteed to 
he negative. This mult is very general and applies to any structure of size less than the 
quasi-particle phase breaking length, l+.  The sample may have arbitrary dimensions, be an 
inhomogeneous mixture or a microfabricated array. 

To examine changes in G due to the onset of superconductivity, it is convenient to 
introduce an appropriate response coefficient. To this end consider a real parameter A0 
which characterizes the magnitude of the superconducting order parameter A(r) .  For 
example A0 could be chosen to equal the spatial average of [A( r)l over the region occupied 
by the superconductor. As noted below, to lowest d e r ,  6G is of order Ai  and therefore it 
is useful to introduce a response coefficient 

aC(A0) lim - 1 a*G(Ao) 
,yA = lim - = 

A o - 4  a(@ A o - 0 2  aAa ' 

t Permanent address: DRA, Electronics Division, Malvern, Worcestenhire M I 4  3PS, UK. 
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This susceptibility, which characterizes the change in G due to the onset of superconduc- 
tivity, is independent of the magnitude of the superconducting order parameter and will be 
referred to as the 'A susceptibility' of the normal host. 

To compute X A ,  we start from a formula for the two-probe conductance G, first derived 
in [6] and which has since been rederived [7,8] and extended to multi-probe measurements 
[9]. Consider first a system at zero temperature. For a sample connected to two normal, 
external, current-carrying leads,  if^^,^, IS the scattering matrix from all incoming p channels 
(where p refers to particles or holes) of lead L' to all outgoing a channels of lead L and 

U.6 . 

then the zero temperature. two-probe electrical conductance, in units of 2e2/h ,  is given by 

2(R*R: - T,T:) 
Ra + Rk + Ta + Ti G = To+ T. + 

where we have taken advantage of particle-hole symmetry at E = 0, which yields 
- - m - f l  P:!'.(o) = PL," (0). 

The coefficients 

Ro = PtT(0) To = PLyL(0) ( R. = PLi(O) T. = pC;(O) ) 

are probabilities for normal (Andreev) reflection and transmission for quasi-particles from 
reservoir L, while R& Td ( R i ,  Tl) are corresponding probabilities for quasi-particles from 
reservoir L'. In the presence of N open channels per lead, these satisfy 

Ro + To + R, + Ta = RL + Td + RL + Ti = N 

and 

To + Ta = Ti + TL. 
Since the Lambert formula (1) is central to the analysis which follows, it is useful to 

consider its relationship to the well-known Biittiker formula [IO] for normal systems and 
the Blonder, Tinkham and Klapwijk (BTK) formula fur normal-superconducting boundaries 
[ll]. In the normal limit, where all Andreev terms vanish, equation (1) reduces to the 
Biittiker result [IO], G = TO. In the derivation of both the latter and equation (I), the 
scatterer is well separated from the sources of quasi-particles by normal, current-carrying 
leads and all scattering amplitudes are obtained by solving the Schradinger equation or the 
Bogoliubov-de Gennes equation. In deriving the above result, the chemical potential of 
the superconductor is determined self-consistently to ensure that on average, quasi-particle 
charge is conserved. Consequently equation ( I )  describes situations in which one or more 
superconducting islands is embedded in a normal background, or in which a superconductor 
is connected to external sources by normal leads and encompasses experiments such as 
those of references [3,4,51, in which both the superconductors and normal background are 
phase coherent. The above approach is to be distinguished from that used to derive the BTK 
formula [ll],  where the superconductor is treated both as part of the scatterer and as an 
incoherent source of quasi-particles. In deriving the BTK formula, the chemical potential of 
the superconductor is imposed externally and on average. the superconductor acts as a sink 
of quasi-particle charge. It is interesting to note that in the limit of zero transmission, where 
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charge transpolt due to quasi-particle diffusion is short circuited by Andreev reflection, 
equation (I) yields for the electrical resistance, G-' = (2RJ'  + (2RL)-'. Hence G-' 
reduces to the sum of two boundary resistances R g  = 1/2R. and Rk = I/ZR:, associated 
with the left and right leads respectively. The BTK formula for a single boundary resistance 
at zero temperature is RB = l / ( N  - Ro+ R.) and therefore in the limit of zero transmission, 
where N - Ro + R, = ZR,, equation ( I )  reproduces the BTK result However in situations 
where quasi-particle transmission is not negligible, the two approaches are distinct. Equation 
( I )  and its finite temperature counterpart must be used when the scattering region is smaller 
than 14, while the BTK formula is intended for use when the superconductor is much longer 

Starting from equation ( I ) ,  we now prove that if the electrical conductance G of a 
normal medium is large enough, then the addition of a superconducting region produces a 
decreose in G. More precisely, we show that in the limit G(0) + N, X A  Q 0. TO this 
end, it is convenient to introduce parameters t., r, which characterize the absence of spatial 
inversion symmetry and write T: = T,(I + ta) and R: = R,(I t ra), so that equation ( I )  
yields at zero temperature, 

than 14. 

Note that in general, t.. r, do not vanish when A0 + 0. From equation (2) one obtains 

where 

In general, since TB, R,, Rt, T; vanish as Ai in the limit A0 + 0, q remains finite in this 
limit and is of the form 

I )  = at, + bra. (5) 

To prove the theorem, we now take the limit that the normal potential U tends to zero. 
In this limit, spatial inversion symmetry is restored and consequently t,, r, + 0. Hence 9 
vanishes and we obtain 

where the last inequality follows from the fact that Ro and T8 vanish in the limit U,  AO + 0 
and therefore cannot decrease with increasing Ao. 

The above argument proves the theorem at zero temperature. However since the analysis 
is separately valid for the contribution to the conductance from quasi-particles of each type 
and energy, it also applies to the conductance obtained from a thermal average at finite 
temperatures [6]. On the one hand the theorem appears trivial, since if one starts from 
a normal system for which G equals an upper bound N, any change 6G must satisfy 
6G < 0. On the other, this result is at first sight surprising, because the BTK formula 
reveals that the current through a perfect normal conductor can be doubled by introducing a 
superconducting boundary at one end. The essential point is that the two-probe conductance 
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of a phase coherent smcture, containing a superconductor of size less than 14, cannot be 
viewed as a boundary conductance and equation (I)  must be used as a starting point for 
computing XA [12]. 

As a simple example, consider an ideal onedimensional (ID) system comprising a single 
delta-function scatterer located at the origin. For such a system, it is convenient to introduce 
a Fermi wavevector kF through the relationfizkg/2m = p and choose potentials U ( x ) .  A(x) 
of the form 

U ( x )  = (h2kF/m)U08(x) A(x) = (h2kF/m)Ao8(x) 

with A0 real. For such a choice, U, and A0 are dimensionless. By matching wavefunctions 
and their derivatives at x = 0, the Bogoliubov-de Gennes equation can be solved exactly. 
At zero temperature, where only the case E = 0 is of interest, particlehole symmetry is 
exact and since the system possesses inversion symmetry, the only distinct reflection and 
transmission coefficients are 

To (1  t U:)/dz R, = Ta = Ai/d2 Ro = 1 - To - Ra - Ta 

where d = (1 t U: t Ai). For this example, G = 1 - RO - T. = l/d and one finds 

Hence aG(Ao)/aA: is negative for all (UO, Ao) and vanishes only in the limit G -+ 0. 
Although this example is far too simple to model a real physical system, it does illustrate that 
even when U0 = 0, normal-superconducting-normal systems can possess a finite resistance 
which increases with increasing A@. 

As a second example, consider a perfect ID system, with U(x)  = A(x) = 0 for all x ,  
except for the region 0 c x c L, where A(x) = Ao. At E = 0, to lowest order in Ao, the 
‘golden rules’ for Andreev scattering introduced in references [8,9] yield 

and 

TO = 1 4- Ai(ih)-’ ld” dx dx‘ 
where 

= u;’”exp(iFx) 

and 

G?(x,x ‘ ,  E) = fiuF)-’exp(-ik&x -1’1). 

Differentiating Ra and TO and noting that 

a 
aA; - ( R o t  T o t  R a t  Ta) = 0 
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yields 

XA = -~uf)-'(sin'kfL)/($). 

As expected, since the embedding system is clean, this result is always less than or equal 
to zero. 

Having examined two simple examples, we now tum to the more realistic situation of 
a disordered embedding material in two dimensions, described by a Bogoliubov-de Gennes 
operator of the form 

H = ( Z  -Ho " ) .  (7) 

In this equation HO is a nearest-neighbour Anderson model on a square lattice, with off- 
diagonal hopping elements of magnitude y and A a diagonal matrix with on site, particle- 
hole couplings of magnitude Ao. The scattering region. shown schematically in figure 1, 
is chosen to be M sites wide and Ns sites long and is connected to extemal leads of width 
M. Within the scattering region, diagonal elements [ E ~ J  of Ho are chosen to be random 
numbers, uniformly distributed between E,, - W and €0 + W. Within the leads, the diagonal 
elements of Ha are equal to a constant €0. In what follows, for a given realization of the 
Hamiltonian H, the scattering matrix was obtained numerically, using a transfer matrix 
technique outlined in appendix 2 of reference [9]. 

/;;;yM Figure 1. A scalierer of width M sites and IengUl Ns silcs, 
connected to external leads of width M. The Ulrrenl flows - 

N, from left to right. 

Figure 2 shows numerical results for systems of two different lengths Ns = 30, 60 and 
two different widths M = 15, 30. The choice y = 0.256, EO = 4y - 1 was made and all 
results are at zero energy. For M = 30 this yields a total of N = 27 open channels in 
the extemal leads. The results of figure 2 were obtained by choosing 3000 values of W, 
spread uniformly over the interval 0 c W < 2 and for each value of W ,  generating a set of 
random diagonal elements ( E ~ J  for Ha. For each set of diagonal elements, the conductance 
G(A0) was first obtained with A0 = 0, then recomputed with A0 = IO4 and finally the 
derivative estimated from the difference between the two values. Each point in figure 2 
is the result of such a calculation. To aid comparison of results for systems with different 
widths, all results are shown as functions of the conductance per channel of the normal 
material, E(o)  = G(o)/N. 

In the limit of a weakly disordered background, with elements ci of average value zero, 
a perturbative evaluation of the right hand side of equation (3) reveals that the mean value 
of XA, which we denote ( x ~ )  is of order (E,?). Since for a normal system with N open 
channels, one expects (G(0)) = N - O((E?)) ,  this suggests a linear dependence of the form 

(XA) - B  -I- c[1 - d(0)l (8) 

where B and C are positive constants. Figure 2 confirms this mean value relation and clearly 
demonstrates that as the conductance per channel approaches unity, ,ya is always negative. 
In addition, figure 2 shows that for smaller values of G(O), the change in conductance 
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F i r e  2. The top left figure shows values of .u vfmus the canductance per channel c(O), for 
system of length N% = 30 and width M = 30 sites, obtained from 3wO diffeml realizations of 
the n o d  system. The top right figure shows resultr for a syxtem of sire N. = 60, M = 30, 
the b u m  Left figure for a system of size N, = 30, M = 15 and the bouom "$1 Cor Ns = 60. 
M = 15. Values of disorder ranging from W = 0 to W = 2 were used. 

accompanying the onset of superconductivity can have arbitrary sign. We have performed 
numerical calculations on a range of systems of varying size, which not only confirm 
equation (8). but also suggest a system size dependence for the constant C of the form 
C - MPN!', with p 0 and p' U 2. The behaviour of the fluctuations is somewhat 
more surprising, appearing to be almost a constant in the regime 1 >. c(0) > 0.5 and 
then undergoing a transition to large fluctuations for E(0) c 0.2 The former behaviour 
is reminiscent of universal conductance fluctuations [1,2] and suggests that random matrix 
theory may provide a useful starting point for obtaining more quantitative analytical results 
in the diffusive regime. Such techniques have recently been used to describe conductance 
fluctuations at normal-Superconducting interfaces [15], but have not yet been applied to 
susceptibilities such as xn. 

To verify that the region of constant fluctuations in xa corresponds to diffusive normal 
hosts. we now present a more detailed analysis of results obtained for a system of size 
N,  = 15, M = 15. First we follow the procedure adopted in figure 2 and choose 3000 
values of W ,  spread uniformly over the interval 0 c W -z 2. For each value of W, the 
conductance per channel ~ ( A o )  of the normal system is shown as a dot in figure 3. Next 
we choose a discrete set of W values ranging from 0 to 2, For a given W, 500 realizations 
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Figure 3. Results for a the conductance per channel e(0) of a n o d  15 x 15 sample. The 
dots show resulls obtained using the sampling technique adopted in figure 2. The dense set of 
pints distributed along venical lines are obtained by choosing a discrete set of values for W 
and for each W generating 5W redimions of the random site enemies. 

of the random site energies cc are generated and the resulting values of c(0) obtained. In 
figure 3, these form a spread of points along vertical lines at the chosen values of W. From 
the 500 sets of results obtained for each value of W, we compute the mean (h(0)) and 
standard deviation SC(0). These are shown plotted against each other in figure 4, which 
illustrates that the region of universal conductance fluctuations corresponds approximately 
to the region 0.2 < (h(0)) < 0.7. For smaller values of e(0). the normal host is localized, 
while for larger values it is ballistic. 

To quantify the behaviour of XA, for each value of W, 500 results for XA were also 
obtained. Figure 5 shows results for the mean ( x ~ )  and standard deviation ~ X A  as a function 
of (c(0)). For weak disorder, where xA is statistically well behaved, this demonstrates that 
(XA) does not vary monotonically with 1 - c(0). Indeed in the ballistic regime, where 
c(0) > 0.7, ( X A )  first decreases with increasing disorder. In the diffusive regime ( x ~ )  
increases monotonically with 1 - d(O), while the standard deviation remains constant. 
Finally for (e(0)) c 0.2, the distribution of x,, develops a long tail and the mean value 
is no longer a useful guide to typical behaviour. 

To illustrate the cross-over from diffusive to strongly disordered behaviour, figure 6 



L65 8 Lefter to the Editor 

0. 

0. 

I 

0 
% 

0 

............ 6.'": 
0 

00 
0 

, .... . . . . . . . . .  

.............. 

0 ;  

' 0  0 

....... 

...... 

........ 

......................................... ~ , 1  0 ;  

0; 

.............. 

0 

............... .- 

0 

0 

0.2 0.4 0.6 0.8 1 .o 
CCCOl, 

Figure 4. From the S O O ~ ~ U ~ L S  obrained for each of the discrete values of W used in figure 3, 
the slandard deviation dC(0) and m m  conducm-ce per channel (G(0)) can be obtained. This 
figure shows the resulting plot of SG(0) versus (WO)). 

shows the same results as figure 5 ,  but with c(0) plotted on a logarithmic scale. Such 
plots make visible the low-conductance results, which are difficult to discern in figure 5. To 
illustrate the behaviour at extremely small values of 6(0) ,  figure 7 shows the same results 
as figure 2, plotted as a function of log&O). As 6(0) -+ 0, XA approaches zero from 
above, with a negligible probability of negative values. 

To obtain a qualitative understanding of this behaviour, consider a highly disordered 
normal host. In the limit that the fluctuations in the normal potential are much greater 
than the Fermi energy (measured relative to the bottom of the band), all scattering states 
@(r)  of the normal material decay exponentially into the scattering region [I], with an 
inverse decay length a and for a scatterer of length L, the conductance G(0) decays as 
G(0) !z exp[-kL]. For such a system, all transmission coefficients are exponentially 
small and therefore when A # 0, electrical conductance is dominated by Andreev reflection 
at the interfaces with external leads. The dominant contribution to xA is 

and from the perturbative approach of reference [SI, is obtained from integrals of the form 
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Figure 5. As in figure 4,,except that the average (,y~) is plotted as a function of (6(0)),  with 
the standard deviation SXA of ,yh shown as vertical bars. 

Hence in the highly localized limit, one expects a typical value of the form 

X A  A l ~ l - ’  N A[lnC(O)]-’ (9) 

where A is a constant. 
After ignoring negative values of XA. figure 8 shows a log plot of the Ns = 30, M = 30 

results of figure 7. For comparison, the squares show results corresponding to a large 
potential barrier, with no disorder obtained by choosing W = 0 and setting the diagonal 
elements of HO within the scattering region, to an increasingly large constant. The solid 
lines show plots of the right hand side of equation (9). obtained by adjusting the parameter 
A to yield a best fit. These indicate that equation (9) correctly predicts the asymptotic 
behaviour of X A  for a potential barrier, as well as the correct qualitative behaviour for a 
highly disordered background. 

In the presence of disorder there currently exists no quantitative theory for XA and 
therefore in this letter we have relied heavily on numerical solutions. Figures 2 and 7 
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Figure 6. As in figure 5. except that (E(0)) is plotted on a logarithmic scale. 

suggest that a complete quantitative theory should be capable of describing four distinct 
regimes, in which XA exhibits markedly different behaviour. In the ballistic regime, the 
ensemble average ( x ~ )  is negative and the theorem proved at the beginning of this letter 
is exemplified ~n the diffusive regime, (,ya) increases monotonically with 11 - C(0)l. 
whereas the fluctuations are independent of c(0). With increasing disorder, a transition 
region is encountered in which the fluctuations increase by several orders of magnitude. 
This regime is particularly interesting. since X A  is very sensitive to small changes in the 
normal potential and therefore the possibility arises of novel switches and new experimental 
probes into changes on an atomic scale. Finally in the strongly localized regime, XA tends 
to zero, in a manner suggested by equation (9). 

In the laboratory, one often considers the response of a physical system to an externally 
applied field and makes measuremenrs of the appropriate linear response coefficient. In this 
letter, we have introduced the 'A susceptibility', 

corresponding to a superconducting order parameter field and have shown that it constitutes a 
new and non-trivial probe into mwoscopic transport. To date, experimental measurements of 
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against log,,C(O). 
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resistance increases at the onset of superconductivity 114,151, have been attributed to quasi- 
particle charge imbalance. The theory presented above presents an alternative mechanism for 
such anomalies, based on coherent Andreev scattering. The behaviour predicted in this letter 
is not restricted to temperatures near T, and persists to zero temperature. The experiments 
of references [14,15] are complicated by the fact that the extemal leads, as well as the 
scattering region, become superconducting below a certain temperature. Consequently as 
the temperature is lowered, the experiment switches between two distinct physical regimes 
and the anomaly is destroyed. More clear cut measurements have been reported recently on 
three micron-sized silver samples with single superconducting islands 1161. Two of these 
samples yielded negative values for x,, and the third a positive result. Furthermore, in 
contrast to the to [14,15], the anomaly persists to the lowest temperatures attainable. From 
the values of ,yb obtained above, one notes that typical values of SG can be much larger 
than e2/h .  This prediction is also borne out by the measurements of reference 1161. 

This work is supported by the SERC, the EC Human Capital and Mobility Programme 
and the MOD. It has benefited from useful conversations with S J Robinson, B Kramer, V 
Petrashov, J-L Pichard and J H Jefferson. Support from the Institute for Scientific Exchange 
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